

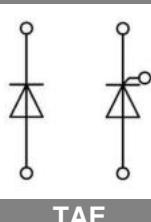
SEMITOP®2

Thyristor and Diode
separated in the same
housing

SK 75 TAE

Target Data

Features


- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Up to 1600V reverse voltage

Typical Applications*

- UPS

1) REMARKS: V_T , $V_{T(TO)}$, V_F , V_{TO} = chip level value

V_{RSM} V 1300	V_{RRM} , V_{DRM} V 1200	$I_T = 75$ A ($T_s = 80$ °C) SK75TAE12
Characteristics		
Symbol	Conditions	Values
I_T	$T_s = 80$ °C	75
I_T	$T_s = 100$ °C	50
		A
I_{TSM}/I_{FSM}	$T_{vj} = 130$ °C; 10 ms	1250
I^2t	$T_{vj} = 130$ °C; half sine wave, 10 ms	7810
T_{stg}		-40 ... +130
T_{solder}	terminals, 10 s	260
Thyristor		
$(dv/dt)_{cr}$	$T_{vj} = 125$ °C	500
$(di/dt)_{cr}$	$T_{vj} = 125$ °C; $f = Hz$	125
t_q	$T_{vj} = 130$ °C; typ.	150
I_H	$T_{vj} = 25$ °C; typ. / max.	250 /
I_L	$T_{vj} = 25$ °C; $R_G = \dots$; typ. / max.	600 /
V_T	$T_{vj} = 130$ °C; ($I_T = 110$ A); max.	1,2
$V_{T(TO)}$	$T_{vj} = 130$ °C	max. 0,85
r_T	$T_{vj} = 130$ °C	max. 4,4
I_{DD} , I_{RD}	$T_{vj} = \dots$ °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$ max. value	max. 0,6
$R_{th(j-s)}$		-40 ... +130
T_{vj}	$T_{vj} = 25$ °C; d.c.	1,98
V_{GT}	$T_{vj} = 25$ °C; d.c.	100
I_{GT}	$T_{vj} = 130$ °C; d.c.	0,25
V_{GD}	$T_{vj} = 115$ °C; d.c.	6
I_{GD}		mA
Diode		
V_F	$T_{vj} = 125$ °C; ($I_F = 100$ A); max.	1,1
$V_{(TO)}$	$T_{vj} = 125$ °C	0,83
r_T	$T_{vj} = 125$ °C	1,6
I_{RD}	$T_{vj} = \dots$ °C; $V_{RD} = V_{RRM}$	mA
$R_{th(j-s)}$	max. value	0,62
T_{vj}		-40 ... +150
Mechanical data		
V_{isol}	a.c. 50Hz; r.m.s.; 1s (1min)	2500 (3000)
M_1	mounting torque	2
w		19
Case	SEMITOP®2	T 82

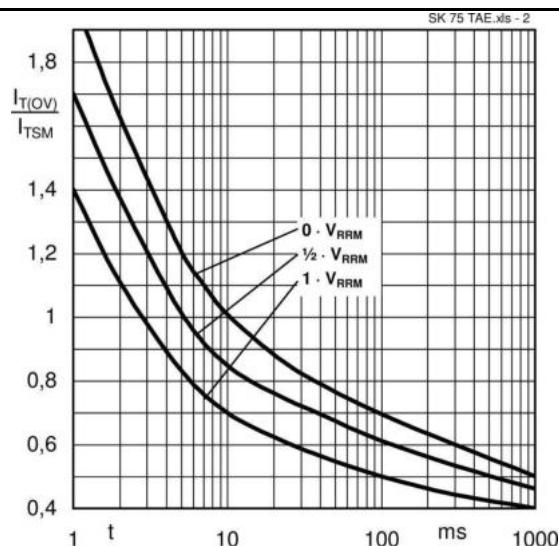


Fig.2 Surge overload current vs. time

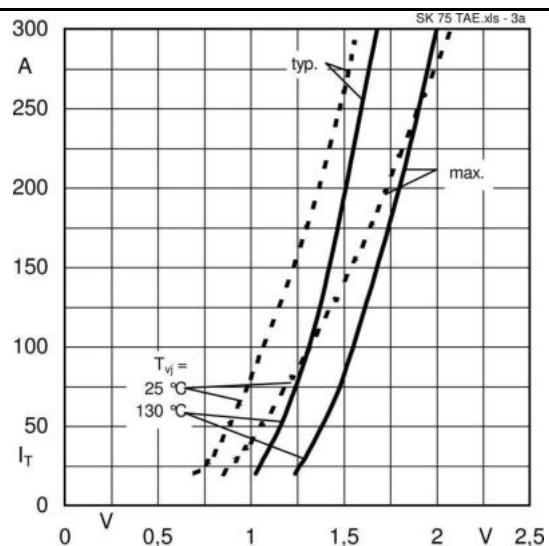


Fig.3a Thyristor forward characteristic

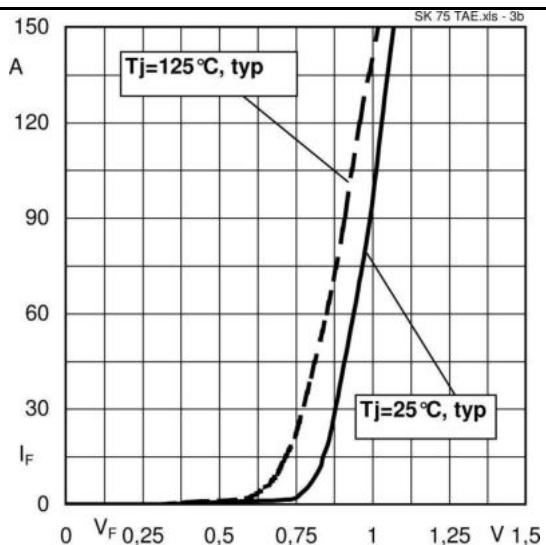


Fig.3b Diode forward characteristic

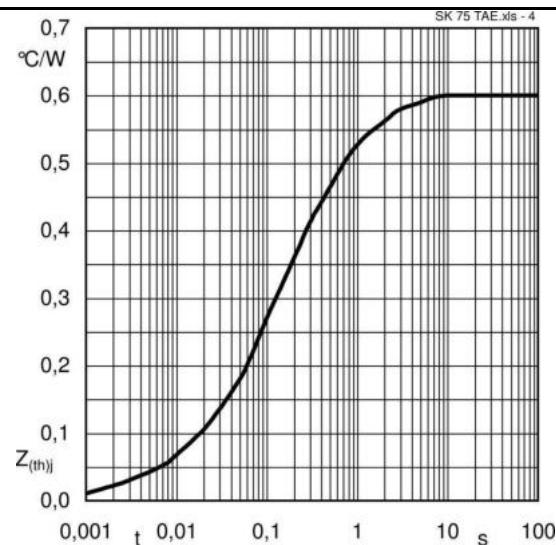


Fig.4 Transient thermal impedance of Thyristor

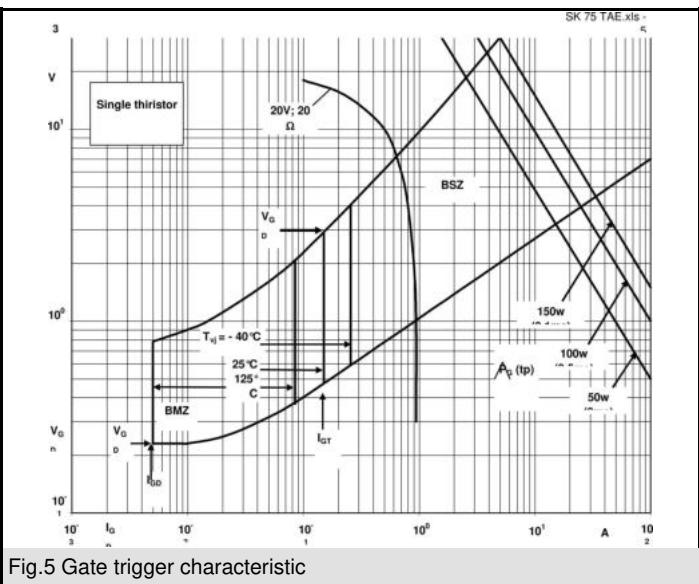
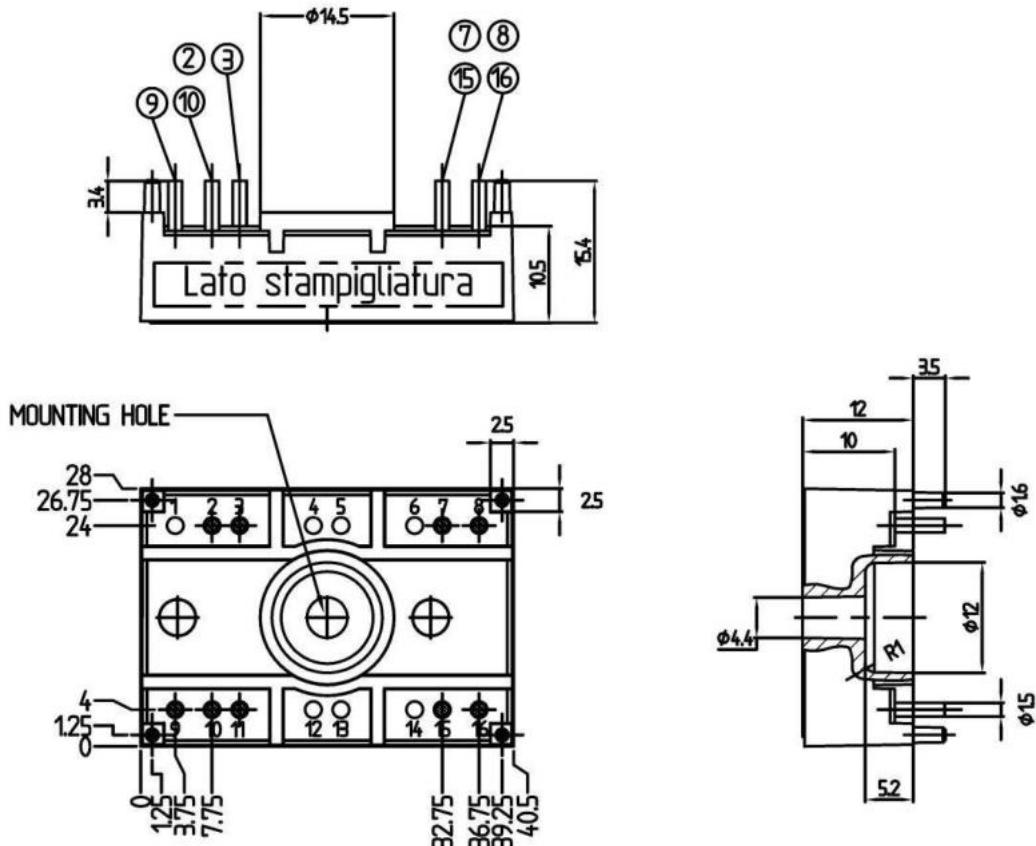




Fig.5 Gate trigger characteristic

Dimensions in mm

SUGGESTED HOLEDIAMETER FOR THE SOLDER PINS AND THE MOUNTING PINS IN THE PCB: 2 mm

Case T82 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.